Challenges & Solution 5 G Network Battery Strategy Deployment

Robert Kaptein | Rotterdam | 12/4/2021

Agenda

Legacy Network Since 2012

%	Size	Radio Set-up	Indoor or Outdoor	Battery Back-up
70%		RRU	Outdoor	100Ah lead acid
3%	Large	RFU	Indoor	100Ah lead acid
25%		RFU	Outdoor	100Ah lead acid
5%	Mediu m	RFU or RRU	In & Outdoor	100Ah lead acid
2%	Small	RRU	In & Outdoor	Not available

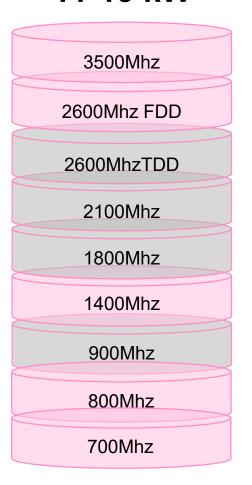
Battery Theft

- Battery theft nationwide all operators
- SDNA Solution for all new and replaced batteries to proof batteries are owned by TMNL

Governmental Regulations

- 5G networks could potentially be indicated to officially become vital infrastructure like power, water, gas
- Potential battery back-up regulation in the future in respect to emergency situations and accessibility of the alarm numbers

Agenda


5G RAN Evolution

3-4 KW

2600Mhz 2100Mhz 1800Mhz 900Mhz

11-13 kW

5G RAN Infrastructure Requirements

<u>AC</u>

- ✓ Power consumption
- ✓ Capacity Grid Connection
- ✓ Capacity Landlord Connection

Cabinet

- ✓ Battery Space
- ✓ Cabinet Access / Key plan
- ✓ Cable entry
- ✓ Cooling Capacity
- ✓ Cooling System
- ✓ 19" Space

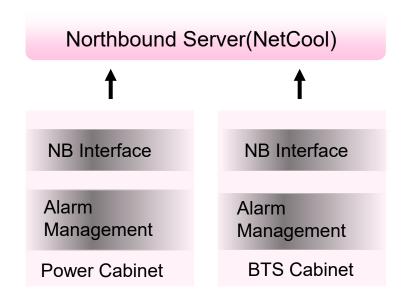
Power

- ✓ Rectifier Capacity
- ✓ Battery back-up /strategy
- ✓ MCB Capacity
- ✓ LLVD & BLVD Capacity

Infrastructure

DC cable diameter

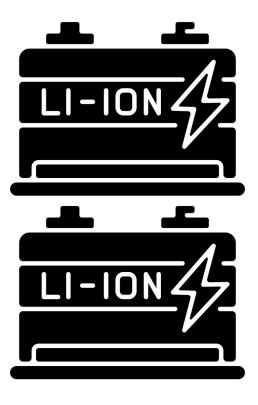
Agenda



Standardizing OSS/Settings

Managing 100% Network wide:

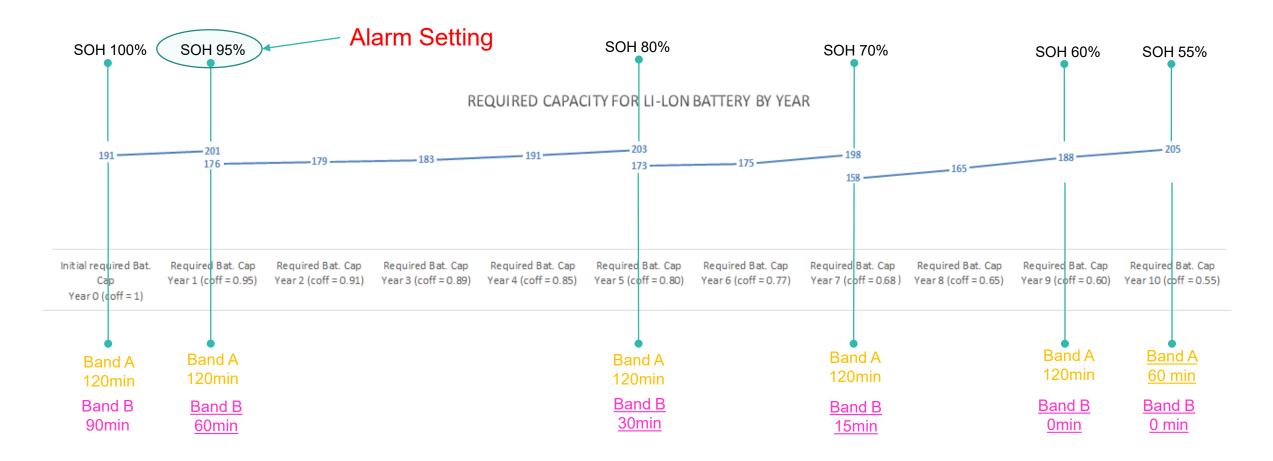
- AC Failure (battery discharge)
- MCB's (LLVD # 1, 2 & 3) & BLVD
- **Batteries**



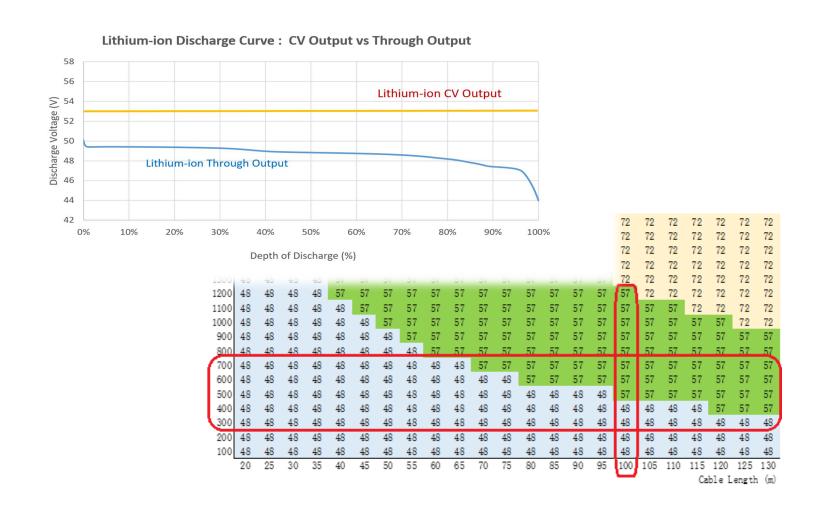
Standardizing Settings/Hardware

- ✓ Reuse existing cabinets
- ✓ Reuse existing power system
- ✓ Add smart DC distribution panels + # LLVD extension
- Replace to Lithium battery for the backup capacity extension
- ✓ Add standardized controllers/Interface into cabinet
- ✓ Standardizing setting & DC connections for all scenario's

- New 2x100Ah lithium ion (high density) batteries will be installed in the same position as the current 1x100Ah which supports:
- Higher power consumption max 9600W
- Peak Load (Max 2min) of 13000W which support future high-capacity requirements
- Anti theft features
- More discharge cycles
- No maintenance anymore
- Full remote management via OSS with SOH, SOC, remaining battery back-up supporting


Standardizing Flexible Remote Batter Strategy

Description	on Battery Back-up Requirement / min		LLVD or BLVD
Band A	120		LLVD 1
	SOH = 100%	90	LLVD 2
	SOH = 95%	60	
Band B	SOH = 80%	30	
	SOH = 70%	15	
	SOH = 60%	0	
Band C	4	LLVD 3	
Band D	4	LLVD 3/4	
Transmission 120			BLVD
BBU	12	20	BLVD


Standardizing Flexible Remote Batter Strategy

Battery Back-up vs. Infrastructure

- The battery continuous output is 53.5 or 57V
- Fully utilizing the existing power cables & breakers vs. the new more consuming WB RRU's
- 2x100Ah lithium-ion batteries within the same space as 1x100Ah lead acid.

End

